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Using Monte Carlo simulations and a domain-wall theory, we discuss the effect of coupling several totally
asymmetric simple exclusion processes �TASEPs� to a finite reservoir of particles. This simple model mimics
directed biological transport processes in the presence of finite resources such as protein synthesis limited by
a finite pool of ribosomes. If all TASEPs have equal length, we find behavior which is analogous to a single
TASEP coupled to a finite pool. For the more generic case of chains with different lengths, several unantici-
pated regimes emerge. A generalized domain-wall theory captures our findings in good agreement with simu-
lation results.

DOI: 10.1103/PhysRevE.80.031142 PACS number�s�: 02.50.�r, 05.60.�k

I. INTRODUCTION

A fundamental and comprehensive understanding of non-
equilibrium phenomena remains one of the greatest chal-
lenges of current condensed-matter and materials physics �1�,
with significant consequences for advances in materials sci-
ence, the life sciences, and engineering. Even the nonequi-
librium steady states of open, transport-carrying systems
continue to defy our equilibrium-trained expectations and in-
tuitions. One approach toward progress has focused on in-
vestigating simple model systems with the goal of identify-
ing generic classes of behaviors.

The totally asymmetric simple exclusion process
�TASEP� �2,3� is one of these models. It has acquired para-
digmatic status for several reasons: �i� it is very simple, con-
sisting of particles hopping along a one-dimensional chain;
�ii� with open boundaries, it shows highly nontrivial behav-
iors such as distinct phases, shocks, and long-range correla-
tions in both space and time; �iii� in its simplest forms, its
steady-state properties, as well as selected dynamic quanti-
ties, can be found exactly; and finally, �iv� the model is
closely related to interesting applications such as biological
transport �4,5� or traffic flow �6�. At the origin of this rich-
ness lies the violation of detailed balance. The specific be-
haviors depend strongly on the boundary conditions. With
periodic boundary conditions, the stationary state is a flat
distribution with all configurations equally probable �7�.
However, the dynamics of this system is nontrivial and dif-
fers from simple diffusion �8�. With open boundary condi-
tions, particles are injected at one end and removed at the
other with different �but constant� rates. In this case, even the
steady state is nontrivial and remained unknown for two de-
cades �9–11�. Despite being a one-dimensional system with
short-range interactions and dynamics, the open TASEP dis-
plays distinct �stationary� phases �12� controlled by the en-
trance and exit rates. As may be expected, the dynamic prop-
erties are even more complex and rich �13–16�.

These TASEP studies have recently been extended by
coupling the chain to a finite �rather than infinite� particle
reservoir �17,18� reflecting a constraint on the total number
of particles. In �17�, the particles represent cars leaving a
parking garage, so that the rate of entry onto the roadway
�the lattice� is chosen to be a constant, as long as there is at
least one car in the garage. In �18�, the TASEP models a
biological transport process �4� and the constraint reflects the
finite number of ribosomes in a cell, with those leaving the
mRNA �the lattice� being “recycled” to the entry point. The
origins and effects of “ribosome recycling” are multifaceted,
such as diffusion of the recycled components from termina-
tion to initiation sites �19�. Addressing all possible issues for
a real cell is beyond the scope of this study and our aim here
is modest, namely, to explore how the finite pool of available
particles affects the lattice occupation and currents. As in
�18�, we consider an entry rate that depends smoothly on the
number of particles in the pool, Np. In particular, we choose
a rate function which is proportional to Np when the concen-
trations of ribosomes in the cell are limited, and, when par-
ticles are abundant, becomes a constant—the inherent bind-
ing rate of a ribosome. The simulation results for a single
TASEP can be described well by a domain-wall �DW� theory
�14,15,18� especially when generalized to account for the
feedback �20�.

In addition to being constrained to a finite pool of ribo-
somes in a living cell, a mRNA must compete against many
other different genes �or mRNAs� for these resources. There-
fore, we are motivated to study the competition of multiple
TASEPs for the same pool of particles. Since different mR-
NAs are comprised of different numbers of codons, it is rea-
sonable to study TASEPs with different lengths. Does one
“win” and another one “lose”? What does “winning” and
“losing” mean?

This paper is organized as follows. The next section in-
troduces our model. In Sec. III, we present simulation results
for two and three TASEPs connected to a finite reservoir of
particles. Analytic results, based on our generalized DW
theory �20�, are derived for an arbitrary collection of
TASEPs and will be discussed in Sec. IV. A final section is
devoted to a summary and outlook.
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II. MODEL FOR COMPETING TASEPS

Let us first review the standard �or “ordinary”� TASEP.
Each site of a discrete lattice of length L is labeled by i
=1, . . . ,L and may be empty or occupied by a single particle.
Thus, a particular configuration can be described by a set of
occupation numbers, �n�i��, each taking the values 0,1. A
configuration evolves to a new one according to the follow-
ing rules. A particle is chosen at random, say, at site i. If the
neighboring site to its right �site i+1� is empty, the particle
hops there with rate unity. If the particle is located on the last
site �i=L� of the lattice, it exits with a probability �. In
addition to the particles on the lattice, we assign a “virtual
particle” to label an external reservoir, so that when chosen,
a particle is placed with probability �, on the first site
�i=1� of the lattice, provided n�1�=0. Notice that this system
can be regarded as a total of Ntot particles hopping on a ring
with L+1 sites, where the site i=0 is associated with the
reservoir and can be occupied by any number of particles. Of
course, the hopping rates into and out of this site are different
from the rest. They can be represented, respectively, as
�n�L� and ��1−n�1��. Note that neither depends on n�0� and
so, as long as Ntot�L, there would be at least one particle
which can be injected onto the lattice. Indeed, this is the
scenario presented in the parking garage problem �17�, in
which interesting transitions are studied for Ntot� �0,L�.
Lastly, the seemingly complicated rule of choosing real and
virtual particles can be replaced, in this formulation of
TASEP, by “randomly choosing an occupied site.”

In the steady state, this simple model exhibits three
phases: a low-density �LD� phase for ��1 /2 and ���, a
high-density �HD� phase for ��1 /2 and ���, and a maxi-
mal current �MC� phase for � ,��1 /2. The densities �̄ in the
three phases are given by � �LD�, 1−� �HD�, and 1/2 �MC�,
respectively. The line �=��1 /2 marks the coexistence of
HD and LD phases and is characterized by the presence of a
shock which performs an unbiased random walk through the
whole lattice. For this reason, the coexistence line is also
sometimes referred to as the “shock phase” �SP�. Since the
entrance and exit rates are constant here, Ntot plays no role
and can be finite �but larger than L� instead of �.

Our motivation for studying the TASEP is modeling pro-
tein synthesis in a cell �4�, in which the particles represent
ribosomes. Thus, Ntot is finite and must be shared between
many mRNA’s �there may be as many as 10 000 mRNAs in
some cells�. Only the unbound ribosomes �i.e., those in the
“pool,” totaling Np� are available for initiation �i.e., to enter
any one TASEP�. Assuming the concentration of these ribo-
somes is uniform, we introduced a more realistic model �18�
for the entry rate, �, that depends on Np as follows. Starting
with just one lattice �mRNA� in our system, let us denote its
total occupation by N, so that

Ntot = N + Np �1�

is kept fixed. Particles still exit the lattice as before, with rate
�, and are placed immediately into the pool. In contrast to
the ordinary TASEP, the �effective� entry rate, �ef f, will now
be controlled by Np through �ef f =�f�Np�. Here, � is a con-
stant and f�Np� assumes a value in �0,1� for all Np. Physi-

cally, �ef f should vanish if there are no particles in the pool,
whence we impose f�0�=0. Further, f should be a monotoni-
cally increasing smooth function of Np. Finally, for suffi-
ciently large Np, we should recover the standard TASEP with
a constant entry rate, �, whence limNp→� f�Np�=1. These
properties are motivated by the notion that the rate for a
ribosome to bind to the mRNA �a� should be limited by the
ribosome availability, especially for low concentrations and
�b� should approach some intrinsic rate for the binding pro-
cess, when the ribosomes are abundant. The specific form of
f�Np� is not very important but we follow �18� and use

f�Np� = tanh�Np/N�� , �2�

where N� is a suitably defined normalization, or crossover,
scale. In �18�, N� was chosen to be the average number of
particles for the standard TASEP with entry and exit rates �
and �.

In the following, we will consider multiple open TASEPs
of various lengths, L� ��=1,2 , . . . ,M�, M being the total
number of chains in our system. Writing the occupation in
each as N�, we naturally define

�� � N�/L� �3�

as the overall densities on each chain and of course,

Ntot = �
�=1

M

N� + Np �4�

as the generalization of Eq. �1�. Most of our simulation re-
sults are for M =2, with a few for M =3. All M TASEPs draw
their particles from the same reservoir, according to the same
�ef f =�f�Np� with f given by Eq. �2�. For multiple chains of
different lengths, we choose N� to be

N� = M−1�
�=1

M

�̄�L�, �5�

where �̄� is the average density for an ordinary TASEP of
length L�, with entry and exit rates � and �. This choice of
N� only serves to locate the specific value of Ntot at which
the system crosses a phase boundary. It also allows us to
define �somewhat arbitrarily�

�tot � Ntot/M−1�
�=1

M

L�. �6�

For our simulation studies, we define a Monte Carlo step
�MCS� as making M +�L� attempts to choose a site to up-
date. Note that, on the average, the pool is updated M times
as often as a site on any lattice. This choice corresponds to
updating all links �nearest-neighbor pairs of sites� with equal
probability, with the understanding that each TASEP is
linked to the pool �independently of the others�. In this study,
the entry rates to all chains are chosen to be the same �ef f.
We typically start with all particles in the pool and wait 100k
MCS for the system to reach steady state. Every 100 MCS
thereafter, we measure the site occupations, n�i�, in each
chain. Using up to 10k measurements as our “ensemble,” we
compute the density profile
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��i� � 	n�i�
 �7�

and the overall density ���i��i� /L for each chain. The av-
erage steady-state current, denoted by J, is obtained by moni-
toring the total number of particles that enter �and exit� a
chain over the last 1M MCS. Note that J is also just the
product ���L�.

III. SIMULATION RESULTS

In this section, we present simulation data for the model
described above. In principle, any number of TASEPs can be
connected to the pool. However, to gain some insight into
competition, we begin with the simplest case, with only two
TASEPs. Although some selected results for the M =3 case
will be presented at the end, most of our data here is for the
case of M =2. As we will see, features already appear when
just one more TASEP is added to the system. By contrast, we
have not encountered, so far, any further surprising phenom-
ena by considering M �2. As in the earlier study �18�, we
explore four regimes here, with � and � corresponding to the
LD, HD, and MC phases of the ordinary TASEP, as well as
the coexistence line, SP. Our main interest is how an increas-
ing Ntot affects the various profiles and so, the average over-
all densities and currents.

A. LD phase

When ��1 /2 and ���, the standard TASEP displays
the LD phase. If coupled to a finite pool, it remains in the LD
phase, since �ef f ��. The only difference is that the density
and current of the system rise linearly with Ntot for small
values of Ntot and approach their asymptotic values from
below as Ntot→�. When two TASEPs compete for this finite
pool of resources, similar behavior is found. The results for
equal length chains are illustrated in Fig. 1�a� for �=0.3, �
=0.7, and L1=L2=1000. As Ntot is increased, the two
TASEPs both remain in the LD phase, with equal densities,
�1=�2=�, and currents, J1=J2=J. Since both TASEPs are
controlled by the same �ef f and �, there is full symmetry
between the two and the observed behavior is hardly remark-
able. The only notable difference between our system and the
one with a single constrained TASEP is observed in ��Ntot�
for Ntot	�L. For our case, �→�tot /3 as opposed to �tot /2
for the single TASEP. This property is easily understandable,
since we can regard the pool as an additional “chain” and
note that the resources are evenly distributed among three �or
two� chains. For large Ntot, both TASEP densities level off to
�, of course. Slightly more interesting is the case where the
two chains have very different lengths such as L1=1000 and
L2=100. Due to the lack of symmetry, it is less obvious that
�1=�2→�tot /3 is still valid for small �tot	�. However, it is
straightforward to show, using the methods in previous stud-
ies �18,20�, that �1= . . . =�M →�tot / �M +1� in general, given
the specific form of �ef f�Np� we chose. At the opposite limit,
the approach to the asymptotic regime is somewhat faster
than for the equal length case. This behavior is also expected,
since the “total” system size �L1+L2=1100� is considerably
smaller than the case above �L1+L2=2000�, so that satura-
tion sets in at smaller values of Ntot.

To summarize, the overall densities of competing chains
behave just as a single TASEP coupled to a finite pool of
particles. Meanwhile, the overall currents are, except for
finite-size effects, also essentially the same: ��1−��.

B. MC phase

For a single TASEP coupled to a finite pool with � ,�
�1 /2, the current approaches its asymptotic value �1/4�
smoothly from below. However, the density exhibits a sharp
“kink,” which marks the crossing of the LD-MC phase
boundary when Ntot becomes large enough to sustain a den-
sity of 1/2 on the chain. The range of Ntot over which this
crossover occurs is controlled by the system size: For large
system sizes, it becomes very narrow and, therefore, appears
as a kink; in smaller systems, the crossover occurs over a
larger range and appears smooth. For the case of two
TASEPs, we observe very similar behavior. Figure 2 shows
our data for �=�=0.7 and L1=L2=1000. Again, the currents
and densities of the two TASEPs coincide provided the two
TASEPs have equal lengths. For unequal lengths, we observe
the anticipated finite-size effect in the density: the longer
TASEP displays a much sharper crossover from LD to MC
behavior than the shorter one. Like the LD case, the overall
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FIG. 1. �Color online� Average overall density and current as
a function of Ntot for �a� L1=L2=1000 and �b� L1=1000 and
L2=100 with �=0.3 and �=0.7.
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densities and currents of two competing chains behave much
like those for a single TASEP, including the finite-size ef-
fects.

C. SP

The SP case is the most challenging due to the large fluc-
tuations that characterize this “phase.” In the standard
TASEP, the system exhibits a freely moving shock separating
a low-density from a high-density region. In the constrained
TASEP, the crossover from the LD to the SP phase is highly
nontrivial. The details depend on both the length of the chain
and the functional form of �ef f. Fortunately, the essentials
are well captured by DW theory �14,15,18� especially when
it is generalized appropriately �20�. Not surprisingly, two
TASEPs of equal length exhibit the same densities and cur-
rents as a function of Ntot. Differences emerge only when
L1�L2, as illustrated in Fig. 3, where �=�=0.3 and L1
=1000, L2=100. These differences may be expected, how-
ever, if we recall that single TASEPs with various lengths
behave quite differently when coupled to a finite pool �18�.
Details of the origins of these differences in our case of two
competing TASEPs can be understood in terms of the gener-
alized DW theory �20� which we discuss in the next section.
Again, like the cases above, when finite-size effects are taken

into account, there are no qualitatively new phenomena when
an additional chain is included in the competition for a finite
pool of particles.

D. HD phase

The most interesting results are observed with � and � set
in the HD phase. For a single constrained TASEP, there are
three distinct regimes in the average total density �18�, as Ntot
is varied. The behaviors for small and large Ntot are ex-
pected: for the former, they follow the LD behavior dis-
cussed above and for the latter, the density and current ap-
proach their asymptotic values. The presence of the third
regime, interpolating between these two limits, was a sur-
prise initially. Here, the density rises linearly with Ntot while
the current remains constant at its asymptotic limit. The ori-
gin of this linear dependence can be traced to Np �the reser-
voir occupation� being essentially constant over a range of
Ntot, so that any changes in Ntot are absorbed by the lattice. In
particular, Np takes the critical value Np

c, given by �ef f�Np
c�

=�, so that coexistence of low- and high-density regions on
the lattice is possible. Unlike the ordinary TASEP, however,
the shock does not wander over the entire lattice. Instead, it
is localized at some point determined by Ntot with an intrin-
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=100 with �=�=0.7.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1400 2800 4200

Data ρ L=1000
Data ρ L=1000
Data J L=1000
Data J L=1000
GDW ρ L=1000
GDW ρ L=1000

N
tot

0

0.1

0.2

0.3

0.4

0.5

0.6

0 700 1400 2100

Data ρ L=1000
Data ρ L=100
Data J L=1000
Data J L=100
GDW ρ L=1000
GDW ρ L=100

N
tot(b)

(a)

FIG. 3. �Color online� Average overall density and current as a
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=100 with �=�=0.3.
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sic width controlled by �Np
f �20�. As for the current, it has

already reached ��1−�� at the lower extreme of this linear
regime and so, it is not sensitive to the final crossover into
the asymptotic HD regime.

Turning to a system with two TASEPs, there appear to be
no new surprises if they are of equal lengths, as displayed in
Fig. 4 for L1=L2=1000. The densities and currents for both
TASEPs coincide and exhibit the three distinct regimes
found in the single TASEP case. In stark contrast, however, a
new feature emerges if L1
L2. To be specific, we will dis-
cuss the case L1=1000, L2=100 here, unless otherwise
stated. While the density of the longer TASEP still displays
the expected three regimes, the shorter system now develops
five regimes as illustrated in Fig. 5. The two outermost re-
gimes �for Ntot near zero and Ntot→�� are the familiar LD
and asymptotic regime. In the central region, however, we
see a horizontal plateau, bordered by two “crossover” re-
gimes where the density increases steeply with Ntot. The cur-
rents show no discernible signature whatsoever, exhibiting
only the LD and the saturation regime. To appreciate the
different behaviors in intuitive terms, we will present several
perspectives here. In the next section, we will provide the

mathematical approach, in which an exact solution of the
generalized DW theory appears to account for all data quite
well.

First, let us examine the “plateau” region. Similar to the
case of a single constrained TASEP, this region is character-
ized by Np being fixed at Np

c, and so, �ef f =� while changes
of Ntot are absorbed by the two TASEPs. The main difference
here is that the excess particles are free to choose either
chain. Given that the pool suffers only minor fluctuations,
N1+N2 is also relatively constant, so that the two chains
simply trade particles back and forth. In terms of the domain-
wall picture, a DW is present in each lattice, but their walks
are completely anticorrelated. Though the shocks are no
longer localized as before �20� and free to wander about,
they are limited by �L1 ,L2�. Specifically, the shorter TASEP
imposes the extent by which the DW may wander on the
longer lattice. In the plateau region, the DW is free to be
anywhere on the shorter lattice, so that the average profile
there is strictly linear. The overall density here is strictly 1/2
and the plateau emerges. In this region, all changes of Ntot
are absorbed entirely by the longer TASEP �i.e., ��1 /�Ntot is
precisely 1 /L1 in Fig. 5�. However, as will be shown below,
the similarity of this behavior to the single TASEP case is
deceptive. The density profiles are quite distinct reflecting
the different origins of the constraints on the DW walks. This
picture also shows clearly why such a plateau cannot exist
for the L1=L2=L case: neither TASEP imposes a limit on the
other. By symmetry, the only point when a DW on one lattice
can wander over one entire lattice is also the point where its
counterpart can wander over all of the other lattice. At this
point, both profiles must be linear and both densities are 1/2,
so that N1+N2=L. Since the pool occupation must remain at
Np

c, this single point corresponds necessarily to Ntot=Np
c +L.

Another perspective on the existence of the plateau is of-
fered in Fig. 6, which shows schematic views of the domains
in the N1−N2 plane in which we are likely to find the L1
=L2=1000 system �Fig. 6�a�� and the L1=1000, L2=100 case
�Fig. 6�b��. For very small Ntot, both TASEPs will be in the
LD phase represented by the circles �green online� near the
origin. As Ntot increases beyond this regime, the system will
find itself mostly in the long ellipses �red online� aligned
along lines of constant N1+N2. Finally, for large Ntot, both
lattices will saturate in the HD phase indicated by the circle
furthest from the origin �blue online�. These two simple
sketches bring out the main difference between the two
cases: if the lattices are of unequal length, there is a range of
Ntot for which the size of the ellipse remains the same. In this
range, the average density on the shorter TASEP is about 1/2
�i.e., N2�100 /2 here� while the occupation on the longer
lattice continues to increase. When the data in Fig. 5 are
replotted in the N1−N2 plane, this picture is largely con-
firmed: Fig. 7. In contrast, for a system with L1=L2, there is
no such comparable range and so, there is no plateau region.
In Fig. 8, we provide two examples of Monte Carlo data
associated with these sketches. They are histograms for find-
ing N1 and N2 particles in the two TASEPs. The “ridges” in
these plots correspond to two of the ellipses in Fig. 6: �a�
along N1+N2�1100 for the L1=L2=1000 case and �b� along
N1+N2�525 for the other case. These ridges also indicate
that, subjected to N1+N2�const, all �N1 ,N2� pairs are
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equally likely. Of course, these observations reflect just the
picture presented above: the DWs on each chain are free to
wander, but strongly anticorrelated and limited by �L1 ,L2�.

To provide yet another perspective, we present the density
profiles of both chains in the L1=1000, L2=100 case in Fig.
9. Note that, in this figure, the horizontal axis is the frac-
tional distance �i /L� along a chain and so, points on the two
curves correspond to different absolute distances �i�. Being
linear, the profile of the short TASEP clearly reflects a totally
delocalized DW. For the long chain, though the profile indi-
cates a localized shock, this appearance is deceptive. The
width �over which the profile changes from LD to HD� is
actually somewhat larger than its counterpart in a single con-
strained TASEP �see, e.g., Fig. 2 in Ref. �20��. The origin of
this broadening can be traced to the additional fluctuations
allowed by the shorter chain �approximately 100 lattice sites
in this case�. In particular, we reexamined a single TASEP of
1000 sites at the same � and � and obtained its profile. To
accentuate the “interface” of the profile, we plot in Fig. 10�a�
the local slopes of the profiles �i.e., ���i����i+1�−��i�,
shown as open diamonds�. Note that these can be regarded
roughly as the probability of finding the shock at site i. Next,
we construct a “smeared” data set ��̃�i �m� as follows: shift
the raw data by j=1, . . . ,m sites and then average over these

m data sets �21�. By this procedure, we hope to account for
the extra degree of freedom which the shock experiences,
thanks to the presence of the short TASEP. The lines �solid
red, thin dashed green, and short dashed blue� in Fig. 10�a�
illustrate the result of smearing with m=100, 200, and 300.
Now we return to the two TASEP system and, in Figs. 10�b�
and 10�c�, display ���i� �solid squares� for the L1 ,L2
=1000,100 and 1000,300 cases, respectively. Meanwhile,
the lines here �solid red and short dashed blue, respectively�
are precisely those from the smeared profiles in Fig. 10�a�.
The good quantitative agreement between the data and these
��̃�i �m� is a convincing confirmation of the picture we pre-
sented: by freely exchanging particles between the two
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FIG. 6. �Color online� Rough sketches of distributions in the
plane for �a� L1=L2=1000 and �b� L1=1000 and L2=100. The
dashed boxes correspond to the region allowed by LD/HD coexist-
ence �i.e., densities of 0.3/0.7 here�.
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FIG. 7. �Color online� Simulation data for L1=1000, and L2

=100 with �=0.7 and �=0.3 in the N1−N2 plane. The dashed
boxes correspond to the region allowed by LD/HD coexistence.
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FIG. 8. �Color online� Distribution of N1 and N2 for �a� Ntot

=1400 and L1=L2=1000 and �b� Ntot=700, L1=1000, and L2

=100 with �=0.7, and �=0.3. The z-axis scale for P�N1 ,N2� is
arbitrary in both figures.
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FIG. 9. �Color online� Average density profile for Ntot=700,
L1=1000, and L2=100 with �=0.7 and �=0.3.
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chains, the shorter TASEP provides extra room for an other-
wise “localized” DW to wander in the longer chain. Our
conclusion here is that there are two contributors to the lo-
calization of the DW in a TASEP competing for finite re-
sources. They are �i� the feedback �20� due to a nontrivial
�ef f, producing an “intrinsic” localization length, and �ii� the
constraint from the other TASEP participating in the give-
and-take of particles. Clearly, �ii� means that the longer chain
imposes no constraint on the shorter one, so that the shock is
completely delocalized regardless of mechanism �i�. By the
same token, the profile of the longer TASEP is typically
somewhat more complex, as both mechanisms play a role.
Naturally, if the chains are of equal length, delocalization
prevails on both and the profiles will be linear �to the extent
allowed by Ntot�, as our simulations confirm. Now, despite
the effects of competition, it is possible to isolate the role of
mechanism �i� and observe an intrinsic profile, as follows.
For each measurement of �n��i��, we use the totals N1,2 to
estimate the position of the DWs in each lattice: k�. Then, we
average the shifted occupations �n��i−k��� to arrive at the
intrinsic profile. The result is statistically identical to the pro-
file in the single TASEP case �20�, so that we are confident of
the merits of the intuitive picture presented here. Details of
this procedure and the comparisons will be provided else-
where �22�.

Having addressed the central plateau regime, we turn to
the two bordering crossover regions. In Fig. 5, we see that
the behaviors displayed here are quite rich. To highlight
these better, we plot the gradients of the three occupations,

N1,2,p, associated with increasing Ntot by ten particles. In Fig.
11, we show the data from the more interesting L1=1000,
L2=100 case. The regions corresponding to the central pla-
teau and its borders are most clearly seen for the small chain
�N2, solid diamonds, red online�: two peaks with a flat valley
in between. At a very naive level, these features can be
roughly understood from the sketch in Fig. 6�b�. For small
Ntot, the circles �green online� traverse along a line with
slope 1/10 corresponding to equal changes in the densities of
the two chains. As Ntot increases further, we see an ellipse
�small, red online� moving into the rectangle. Here, we might
expect the two N’s to increase together until the ellipse spans
the vertical range of the rectangle. From there on, N2 ceases
to change while N1 continues to increase. A similar crossover
region is present for the right end of the rectangle, when N2
again increases. Though this intuitive reasoning provides a
qualitatively picture of the five regimes, it clearly fails to
capture the details of the two crossover regions. For ex-
ample, the changes in the two N’s in the first crossover are
anticorrelated rather than increasing together. Evidently,
these details are sufficiently subtle that they can only be fully
understood in a quantitative theory for domain-wall
motion—the subject of Sec. IV.

E. Competition between three TASEPs

Turning next to the study of competition between three
TASEPs, we see immediately that even more scenarios are
possible, from all lengths being equal, to some being the
same, to all lengths being drastically different. Though we
have explored quite a few cases, we will only present data
for the most extreme one �HD�: L1=1000, L2=100, and L3
=10 with �=0.7 and �=0.3. How the three densities vary as
we increase Ntot is shown in Fig. 12. We again see the
smaller two TASEPs entering into a plateau regime, with
linear profiles and half filling on the average. Meanwhile, the
longest chain again displays a localized shock as shown in
Fig. 13. In more detail, the shortest TASEP reaches �=1 /2
first, followed by the intermediate chain. The behavior of the
longest TASEP is much the same as what we observed in the
L=1000 chain above. It appears that adding a third chain
does not lead to any qualitatively novel behavior. The overall
currents, especially if the severe finite-size effects associated

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

-300 -200 -100 0 100 200 300

1-TASEP data
smeared by 100
smeared by 200
smeared by 300

-200 0 200

(a )

-250 0 250

( c )( b )

FIG. 10. �Color online� �a� Local slopes of the profile for a
single TASEP with L=1000 and its smeared versions shown here as
lines �solid red, thin dashed green, and short dashed blue�. Open
diamonds ��� are data points, obtained with �=0.7,�=0.3,N�

=385,Ntot=650, and shifted so that the peak lies at the origin. �b�,
�c� Solid squares ��� are data points for the L=1000 TASEP com-
peting with a shorter one: L=100 �b� and 300 �c�, respectively.
Lines are same as those in �a�.

FIG. 11. �Color online� Occupation gradients of N1, N2, and Np

with respect to Ntot for L1=1000, and L2=100 with �=0.7 and �
=0.3.

COMPETITION BETWEEN MULTIPLE TOTALLY… PHYSICAL REVIEW E 80, 031142 �2009�

031142-7



with L=10 are taken in account, also display few surprises.
Of course, the phase space for M =3 is considerably larger
and phenomena may very well emerge upon closer examina-
tion. Further studies are in progress and will be reported
elsewhere. In the remainder of this paper, we will focus on a
quantitatively viable analytic picture for an arbitrary number
of TASEPs.

IV. GENERALIZED DOMAIN-WALL THEORY

To understand most of the phenomena we observed, it is
sufficient to use the simplest approximation �18�, based on
self-consistent equations between the feedback dependence,
�ef f�Np�, and the occupation variables, N�, for the TASEPs.
The only serious complication arises in the HD case, when
�ef f reaches � and each individual TASEP enters an SP-like
regime. As presented above, a variety of interesting behav-
iors emerge for which intuitively reasonable simple argu-
ments paint a good qualitative picture. In this section, we
will provide a quantitative description, which relies on an
excellent approximation, namely, an appropriately general-
ized domain-wall theory �18,20�. Proposed about a decade
ago for the standard single TASEP �14,15�, DW theory as-
sumes that the configurations are well accounted for by those

with a microscopic interface between two regions, one with
high density �+ and another with low density �−. The gener-
alization to a single TASEP constrained by finite resources
�18,20� provided excellent agreement with all aspects of
simulation data. Referring the reader to �20� for details, let us
first present a brief summary of this approach here in the
context of multiple TASEPs competing for the same pool of
particles.

We assume that a configuration of the system of M
TASEPs can be well approximated by specifying the position
of the shocks �DWs� on each lattice, k�� �0,L��, with �
=1, . . . ,M. Since all chains are subjected to the same entry
and exit rates of particles, we will further assume that the
densities before �sites i�k� and after �sites i�k� the wall on
all chains are identical, i.e., �−=�ef f and �+=1−�, respec-
tively. Now, �ef f depends on the numbers in the pool and so,
on the occupation on the lattices, N�. Thus, to close the equa-
tions, we need the relationship between N� and k�:

N� = �−k� + �+�L� − k�� �8�

=��ef f + � − 1�k� + �1 − ��L�, �9�

which leads us to the pool occupation,

Np = Ntot − �
�

N�, �10�

and the dependence of �ef f on the k’s. In short, from �ef f
=�f�Np�=� tanh��Ntot−��N��N��, we have

�ef f�K� = � tanh
Ntot − �1 − ���
�

L� − ��ef f + � − 1��
�

k�

N�
� .

�11�

Note that �ef f depends only on the sum

K � �
�=1

M

k� �12�

rather than the individual k’s. This simplification will be cru-
cial for us to find an exact steady-state solution to the master
equation in our system. Of course, we must solve the non-
linear, self-consistent Eq. �11� to determine �ef f�K�. This task
was performed numerically as in the previous study �20�.
Indeed, we have the same functional form as before, except
that we now encounter �ef f�K ;��L�� instead of �ef f�k ;L�.

Once �ef f�K� is known, the rates for the DW to hop to the
left �D−� and right �D+� can be computed. We denote explic-
itly their K dependence by a subscript:

DK
− =

�ef f�1 − �ef f�
1 − � − �ef f

, �13�

DK
+ =

��1 − ��
1 − � − �ef f

. �14�

With these, the master equation for P��k�� , t�, the probability
to find DWs at �k�� at time t is well defined. For �k�� lying in
the interior of the allowed domain, it is easy to write
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FIG. 12. �Color online� Average overall density and current as a
function of Ntot for L1=1000, L2=100, and L3=10 with �=0.7 and
�=0.3.
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FIG. 13. �Color online� Average density profile for Ntot=600,
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�tP��k��,t� = �
j=1

M

�DK+1
− P��k� + ��j�,t� + DK−1

+ P��k� − ��j�,t��

− M�DK
− + DK

+�P��k��,t� , �15�

where ��j is the Kronecker delta. At the boundaries, we must
impose reflecting boundary conditions on the appropriate k’s.
Since there are quite a few �3M −1� of these conditions, it
will be helpful to begin by studying the M =2 case explicitly
�four corners and four sides of a rectangle�. In the next sub-
section, we will provide some details for obtaining the
steady-state solution associated with this case. We will find
that the natural variables are �K ,Q�k1−k2� rather than
�k1 ,k2�. The insights gained here will facilitate the analysis
of the arbitrary M case to be presented in the last subsection.

A. Case with two TASEPs

Here, we focus on the steady-state solution to Eq. �16� for
M =2, for 0�k1�L1 and 0�k2�L2. Dropping the t, and
setting the left to zero, this equation reduces to

0 = DK+1
− �P�k1 + 1,k2� + P�k1,k2 + 1�� + DK−1

+ �P�k1 − 1,k2�

+ P�k1,k2 − 1�� − 2�DK
− + DK

+�P�k1,k2� , �16�

where

K = k1 + k2 �17�

here. The minimum boundary conditions to be imposed cor-
respond to one or both DWs being reflected from the ends of
the lattices. Thus, at the four sides of the rectangle, we write

0 = Dk1+1
− �P�k1 + 1,0� + P�k1,1�� + Dk1−1

+ P�k1 − 1,0�

− �Dk1

− + 2Dk1

+ �P�k1,0� , �18�

0 = Dk2+1
− �P�0,k2 + 1� + P�1,k2�� + Dk2−1

+ P�0,k2 − 1�

− �Dk2

− + 2Dk2

+ �P�0,k2� , �19�

0 = DL2+k1−1
+ �P�k1 − 1,L2� + P�k1,L2 − 1��

+ DL2+k1+1
− P�k1 + 1,L2� − �DL2+k1

+ + 2DL2+k1

− �P�k1,L2� ,

�20�

0 = DL1+k2−1
+ �P�L1,k2 − 1� + P�L1 − 1,k2��

+ DL1+k2+1
− P�L1,k2 + 1� − �DL1+k2

+ + 2DL1+k2

− �P�L1,k2� .

�21�

Similarly, the conditions at the four corners are

0 = D1
−�P�0,1� + P�1,0�� − 2D0

+P�0,0� , �22�

0 = DL1+L2−1
+ �P�L1 − 1,L2� + P�L1,L2 − 1��

− 2DL1+L2

− P�L1,L2� , �23�

0 = DL1−1
+ P�L1 − 1,0� + DL1+1

− P�L1,1� − �DL1

+ + DL1

− �P�L1,0� ,

�24�

0 = DL2−1
+ P�0,L2 − 1� + DL2+1

− P�1,L2� − �DL2

+ + DL2

− �P�0,L2� .

�25�

However, as discovered in a previous study �20�, there is a
more subtle boundary condition. For sufficiently low Ntot, it
is not possible for one or both DWs to reach the left bound-
ary. Specifically, if Ntot� �1−���L1+L2�, then at least one of
the lattices cannot be filled with the high density, �+, so that
the sum of the DW positions must be larger than Kmin�L1
+L2−Ntot / �1−��. Another way to understand this limit is
that the pool is empty �Np=0� when K reaches Kmin. Both
�ef f and D− vanish and we simply have P�0 for k1+k2
�Kmin. To summarize, we see that P�k1 ,k2� can be nonzero
only in a �generally� “cut-rectangular” domain:

R: 0 � k1 � L1, 0 � k2 � L2, Kmin � k1 + k2.

�26�

Taking into account this complication of the boundary
conditions and thanks to D being dependent on only one
variable, these equations can be solved analytically. In par-
ticular, although the original competing TASEPs is a non-
equilibrium statistical mechanics problem, the DW approxi-
mation reduces it to the point that detailed balance prevails.
Specifically, the product of the rates around every elementary
loop �through the four points �k1 ,k2� ; �k1+1 ,k2� ; �k1+1 ,k2
+1� ; �k1 ,k2+1�� in configuration space is

DK
+DK+1

+ DK+2
− DK+1

− �27�

regardless of the direction taken around the loop. Since all
closed loops in this space are composed of these elementary
loops, the Kolmogorov criterion �23� is satisfied. Thus, we
have detailed balance

DK
− P�k1,k2� = DK−1

+ P�k1 − 1,k2� = DK−1
+ P�k1,k2 − 1�

�28�

and the solution can be obtained by recursion. Setting

P�L1,L2� � Z−1 �29�

where Z is a �normalization� constant, we easily find the
stationary distribution, for K�L1+L2−1,

P�k1,k2� = Z−1
�K� , �30�

provided �k1 ,k2� lies in R. Here, we define


�K� � �
j=K

L1+L2−1 Dj+1
−

Dj
+

�31�

and emphasize that P�k1 ,k2� varies only via the sum k1+k2
and is flat along lines of constant K. Due to the irregular
shape of R, the normalization factor Z is straightforward to
find but not simply �K
�K�, as in the single TASEP case
�20�. For example, if 0�Kmin�L1, then

Z = 1 + �
K=Kmin+1

L1+L2−1

��L1 − K���L1 − K� + L2 + 1�
�K� ,

�32�

where � is the Heaviside function.
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Since this stationary distribution depends only on the sum
of the shock positions, it behooves us to change the variables
from �k1 ,k2� to �K ,Q�, where

Q � k1 − k2. �33�

In terms of these variables, Eq. �16� becomes

0 = DK+1
− �P�K + 1,Q + 1� + P�K + 1,Q − 1��

+ DK−1
+ �P�K − 1,Q − 1� + P�K − 1,Q + 1��

− 2�DK
+ + DK

−�P�K,Q� �34�

with similar replacements for the eight boundary conditions.
The detailed balance condition, Eq. �28�, now reads

D+K
+ P�K,Q� = DK+1

− P�K + 1,Q + 1� = DK+1
− P�K + 1,Q − 1�

�35�

and suggests a solution that depends only on K. Assuming
the ansatz

P�K,Q� = Z−1
�K�H�Q,K� , �36�

where H�Q ,K� is a Heaviside-like function �unity in R and
zero otherwise�, we find 
�K+1��
�K�DK

+ /DK+1
− . Taking

some care with the boundary conditions, it is easy to verify
that form �36� is indeed valid.

Before turning to a theory for the multi-TASEP case, let
us compare the predictions �with no adjustable parameters�
of this approach with the data. First, the density profiles can
be obtained, following the methods in the previous study
�20�:

�1�i� = �
k2=0

L2 ��1 − �� �
k1=0

i

P�k1,k2� + �
k1=i+1

L1

�ef f�K�P�k1,k2�� ,

�37�

�2�i� = �
k1=0

L1 ��1 − �� �
k2=0

i

P�k1,k2� + �
k2=i+1

L2

�ef f�K�P�k1,k2�� .

�38�

In this expression, it is clear that �k2
P�k1 ,k2� is just the prob-

ability for finding the DW at k1 regardless of the configura-
tion in the other TASEP and similarly for �k1

P. We find that
these agree well with all observed profiles—not only for re-
gimes with little structure but also for complex situations
such as the plateau region. As an illustration, in Fig. 9 we
show profiles for the familiar L1=1000, L2=100 case with
Ntot=700. It is clear that the essentials of our system, such as
a linear profile in one chain along with a localized shock in
the other, have been successfully captured in this theory.
From these profiles, we obtain the overall densities by ��

=�i���i� /L�. As shown in Figs. 1 and 3–5, they are in excel-
lent agreement with the simulation data. Not surprisingly, the
histograms for �N1 ,N2� shown in Fig. 8 can also be pre-
dicted, being basically P�k1 ,k2� via correspondence �9�. Al-
though the agreement is also quite good, we should remark
on two shortcomings. First, relationship �9� between N and k
cannot be exact, since both N and k are integer valued. Sec-
ond, lattices with N greater than �+L or less than �−L are

obviously absent from the theory, a limitation due to the DW
approximation. However, in all the regions we have ex-
plored, these shortcomings result only in minor disparities.

Since so many aspects of our system can be understood
by this approach, let us return to form a better intuitive pic-
ture for the two crossover regions for the L1=1000, L2
=100 case discussed at the end of Sec. III D. First, note that
there are subtle changes in the gradients of N�, as Ntot in-
creases up to the lower crossover �Ntot�400 in Fig. 11�. By
contrast, �Np /�Ntot remains relatively constant. More signifi-
cantly, the longer chain “loses” while the shorter one “wins.”
This behavior can be traced to the DWs being mostly bound
to the exit �right edge�, but making longer and longer excur-
sions into the lattice as particles in the system become more
abundant. The exponential tails of this excursion are essen-
tially identical provided they do not intrude significantly into
the entry �left edge�. Indeed, if we measure the ratio of the
profiles �1�900+ i� /�2�i�, it is essentially unity for Ntot up to
�400. Nonetheless, the overall density of the shorter lattice
is affected more by a similar portion of an enhanced profile
�over �−�, and so, will increase faster. We should also remark
that the density to the left of the shock �low-density region�
in either lattice has yet to reach the final value �i.e., �−���.

After we enter the first crossover region �Ntot�400�, the
DW wanders further from the exit in each lattice. It eventu-
ally reaches the left side of the smaller TASEP and enters the
SP. To understand how this transition occurs, let us look at
how the density of the ordinary unconstrained TASEP of
infinite length changes as a function of � with ��1 /2 as we
cross the first order line �=�. Starting from �=0, the density
rises linearly until �=�. At this point, the density jumps to
1/2. It then jumps again to a value of 1−� for ���. For a
system with a finite length, these jumps are no longer sharp,
but smeared out near the value of �=�, reflecting a rapid
increase in the density �and number of particles� in this re-
gion. We now use this information, noting that �i� Ntot con-
trols the effective �, and �ii� �ef f =� spans a whole region of
Ntot, and �iii� that the shorter TASEP behaves essentially like
an unconstrained one, since it can draw from both the pool
and the longer chain. The first rapid increase, as �ef f ap-
proaches � from below, is responsible for the first peak of
dN2 /dNtot just above Ntot=400 shown in Fig. 11. Clearly, the
gradient then decays to zero as N2 reaches the characteristic
plateau. The next peak reflects the end of the �ef f =� region:
it is related to the sharp increase in the density on the other
side of the first order line. In terms of the domain-wall pic-
ture, the first peak reflects the fact that the exponential tail in
the density profile reaches the entrance and changes from an
exponential decay into a linear one. In other words, the prob-
ability of finding the shock near the entrance increases until
it is flat across the whole system. At the second crossover,
the reverse happens: the system is in a high-density phase,
with a small exponential tail at the entrance, indicating that
the shock is now predominantly found there.

It is interesting to note that, in the first crossover regime,
the pool loses steadily at sharing the increases in Ntot. Of
course, over the plateau regime, only the longer chain gains
from the changes in Ntot. The picture for the second cross-
over regime is essentially the same, except occurring in “re-
verse order.” Needless to say, the pool is the ultimate winner
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in this competition absorbing all increases in Ntot beyond this
regime.

B. Multiple TASEPs

The insights gained in the detailed analysis for two
TASEPs greatly facilitate investigation of the general multi-
TASEP case here. In particular, since the entry rates into all
M chains are the same, �ef f, and depend only on K=��k�,
the transition probabilities in master equation �16� again sat-
isfy the Kolmogorov criterion. A change in coordinates simi-
lar to the two TASEP case can be performed, with K��k� as
the special variable. The boundary conditions are also
straightforward though considerably more tedious, since the
M-dimensional generalization of R is more complicated in
general. Nevertheless, thanks to detailed balance, it is simple
to solve for the stationary distribution associated with this
�effectively one-dimensional� master equation. The answer
will again be form �36�:

P��k��� = Z−1
�K�H��k��� , �39�

where the Heaviside-like function is now defined for the
M-dimensional R. Needless to say, the “cuts” of constant K
across R are geometric objects of dimension M −1, the gen-
eral shapes of which are far more complicated than the lines
in the M =2 case above. As a result, the normalization factor
is given by a much more complex expression than Eq. �32�,
since the coefficients involve polynomials �in K� up to order
M −1. Nevertheless, these computations are very simple for
modern computers and P��k��� can be easily accessed nu-
merically for a reasonable range of M’s. For example, we
computed P�k1 ,k2 ,k3� for the three TASEP case discussed in
the previous section �L1=10L2=100L3=1000, with �=0.7
=1−��. From P, we obtained the average profiles and over-
all densities as a function of Ntot. As shown in Fig. 12, there
is excellent agreement between this theory and the data, over
the many regimes encountered while Ntot increases. Simi-
larly, we find good agreement for the average density profiles
as illustrated in Fig. 13 for the case with Ntot=600. While
two profiles are linear and one contains a localized shock, all
properties are well predicted by this approach. Of course, the
crossover regimes are richer, as each of the shorter chains
produces peaks in the gradients similar to those shown in
Fig. 11. With no qualitatively new phenomena, these and
other cases, as well as further details, will be discussed in a
later publication �22�. Our conclusion is that the generalized
DW theory is remarkably successful at capturing the essence
of our problem. Only the study of very sensitive quantities
reveals a poorer match between this approach and simulation
data.

To end this section, let us note that there is a thermal
analog for P��k���, namely, the canonical ensemble. Here, K
plays the role of the total energy, E, while the total number of
points in a sheet of fixed K corresponds to the microcanoni-
cal partition function, ��E�. The point �k��= �L�� �highest K
allowed� would be the “ground state,” while the precise con-
nection between E and K is given by E=−kBT ln 
�K�. Of
course, we chose to label our normalization constant Z to
carry this analogy to its logical end. Meanwhile, Ntot seems

to play the role of temperature, with the average of −K being
a monotonically increasing function of Ntot. Exploring this
correspondence will be both interesting and imperative, es-
pecially if we hope to make progress toward our goal,
namely, a cell with a few thousand different genes, each
appearing in hundreds of copies.

V. SUMMARY AND OUTLOOK

In this paper, we explored how competition between
TASEPs affects the density profile, the overall density, and
the current for each chain. A feedback mechanism introduced
previously �18� was implemented. We used Monte Carlo
simulations to explore the properties of the overall densities,
currents, and profiles of the TASEPs for a variety of param-
eters �lattice length, Ntot, �, and ��. The competition pro-
duced several features that are absent from the case of a
single TASEP constrained by finite resources �18,20�. There,
the feedback serves to localize a domain wall when the con-
trol parameters are set in favor of its appearance in the lat-
tice. Here, the presence of other TASEPs adds an extra di-
mension to the feedback leading to the delocalization of the
DW to the extent allowed by the lengths of the other chains.
Thus, when a long chain competes with a short one, its DW
wandering is limited by the length of the latter. By contrast,
a DW in a short chain is free to roam over the entire lattice,
so that the average profile displayed is strictly linear and the
average overall density is just 1/2. This picture can be readily
generalized to three or more chains and is confirmed in lim-
ited simulation studies with three competing TASEPs.

For the single TASEP with feedback, the standard
domain-wall theory was appropriately generalized and
proved to be extremely successful �20�. Extending this
theory to an arbitrary number of TASEPs is straightforward
and a master equation for P��k�� , t�, where k� denotes the
position of the DW in the �th chain, is easily formulated.
Fortunately, we are able to find the steady-state solution in a
system where the entry rates onto all chains are the same.
The details were presented for the two TASEP case and steps
for extending it to arbitrary M were provided. A remarkable
feature is the existence of an intimate mapping from our
steady state to a canonical equilibrium ensemble. From this
stationary distribution, all density profiles and currents can
be predicted with no adjustable parameters. The results agree
well with all data and give us much insight into a variety of
phenomena discovered in simulations.

The most intriguing questions beyond our study here fo-
cus on time-dependent phenomena. Even for the standard
TASEP, there is a wealth of interesting dynamics �8,13�.
How are these affected by constraints of finite resources and
competition? For example, one of the simplest quantities dis-
playing remarkable behavior in the open TASEP is the power
spectrum associated with the total occupation, N�t� �16�. Pre-
liminary data for a single chain coupled to finite resources
reveal a host of phenomena �24�. With many chains compet-
ing for one pool of particles, we can study many other quan-
tities such as correlations between the various TASEPs.
Hopefully, these pursuits will reveal other exciting secrets in
this system and provide us with a deeper insight.
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Being motivated by protein synthesis in cells, there are
many extensions we can explore. Here we list some ex-
amples. The initiation rates for various genes are far from
being identical. Thus, we should introduce a full set of ����s,
to model highly and rarely expressed genes. Naturally, these
will induce complex �k�� dependences in the DW hopping
rates: D���k���. One serious consequence is that the transi-
tion rates in master equation �16� will typically violate the
Kolmogorov condition, so that the steady-state solution will
be truly nonequilibrium in character. Nontrivial steady-state
probability currents necessarily follow �25� and their impli-
cations surely deserve further pursuit. Other obvious exten-
sions include important aspects of protein synthesis which
have been considered in earlier models, such as having par-
ticles with finite extent to model the fact that ribosomes are
relatively large molecules “covering” many codons �4� and
the inclusion of inhomogeneous hopping rates along the lat-
tice to model the inhomogeneous sequence of codons and the
wide range of concentrations of their associated aa-tRNAs

�26�. Another aspect is the ribosome recycling enhancement
considered by Chou �19� and the role of diffusion of �the
subunits of� ribosomes in a competitive environment. Along
these lines, to model the workings of a cell better, we should
consider a system with some regulation on Ntot as opposed to
being just a preassigned fixed number. Finally, an even more
ambitious goal is to include not only the competition for
ribosomes, but also for the many varieties of aa-tRNA mol-
ecules. Clearly, much work remains to be done in order to
arrive at a realistic model of, and to better understand, pro-
tein synthesis in a cell.
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